KXI 2019

Note: There is NO string in KXI

Note: There are no floating point numbers

Meta-Language
HEE is defined as

|

; end of rule [] optional
{ } Zzero Or more occurrences () grouping
X non-terminal symbol x "x" terminal symbol x
RN terminal symbol "
Comment
Comment ::= "//"™ comment until the end of the line
letter ::= Any ASCII character from "A" to "Z" or "a" to "z"
identifier ::= letter { letter | number } ;
Handle identifiers of at least length 21
character::=

printable ascii

| nonprintable ascii
Names, Types and Literals
keyword ::=
"atoi"™ | "and" | "bool" | "block"™ | "break" | "case" | "class"

"char" ‘ "Cj_n" ‘ "cout" ‘ "default" ‘ "alge" ‘ "false" ‘ "j_f" ‘ "int"
"itoa" | "kxi2019" | "lock" | "main"| "new" | "null" | "object" | "or"
| "public" | "private" | "protected" | "return" | "release" | "string"
| "spawn" | "sym" | "set"| "switch" | "this" | "true" | "thread" |
"unprotected" | "unlock" | "void" | "while" | "wait"
modifier::= "public" | "private"
class name::= identifier ;
type ::= "int" | "char" | "bool" | "void" | "sym" | class_name
character literal::= "\’" character "\’"

or strings in KXI.

alternative definition

These are tokens found by your lexical analysis.

numeric literal::= ["+" | "-"]number ;
These are tokens found by your lexical analysis.

number: :=

"O"{number} | "1"{number} | "2"{number}
| "4" {number} | "5"{number} | "6"{number}
| "8"{number} | "9"{number}

| "3"{number}
| "7"{number}

printable ascii::=
These are the ASCII values between decimal 32 (SPACE) to 126 (~)
found by your lexical analysis.

nonprintable ascii::=
Nonprintable ASCII values are between decimal 0 (null) to 31
(unit separator) as well as 127 (DEL) found by your lexical
analysis. They can be formed by combining a ‘\’ with a printable
ASCII character *\n’, *\r’,’\t’ and for example.

Case Block

case block::= "{" {case label} "}"
case label::= "case" literal ":" statement ;
literal::= numeric literal | character literal ;

Start Symbol
compiliation unit::=
{class_declaration}
"void" "kxi2019" "main" " (" ")" method body

’

Declarations
class declaration::=
"class" class name "{"
{class member declaration} "}"

’

class member declaration::=
modifier type identifier field declaration /* can't return a
array */
| constructor declaration

’

field declaration::=
("™ "1"] ["=" assignment expression] ";"
| "(" [parameter list] ")" method body

’

constructor declaration::=
class _name " (" [parameter list] ")" method body ;

method body::=
"{" {variable declaration} {statement} "}"

variable declaration::=
type identifier ["[" "]"] ["=" assignment expression] ";" ;

parameter list::= parameter { "," parameter } ;

parameter::= type identifier ["[" "]"] ;

Statement

statement: :=
"{" {statement} "}"
expression ";"

\
| "if" " (" expression ")" statement ["else" statement]
| "while" " (" expression ")" statement
| "return" [expression] ";"
| "cout" "<<" expression ";"
| "cin" ">>" expression ";"
| "switch" " (" expression ")" case Dblock
| "break" ";"
Expression
expression: :=
"(" expression ")" [expressionz]
| "true" [expressionz]
| "false" [expressionz]
| "null" [expressionz]
| "this" [member refz] [expressionz]
| numeric literal [expressionz]
| character literal [expressionz]
| identifier [fn arr member] [member refz] [expressionz]

/* function or array member element */
fn arr member::= " (" [argument list] ")" | "[" expression "]"

4
argument list::= expression { "," expression } ;

/* reference a class member, can be a variable, function, or array */

member refz::= "." identifier [fn arr member] [member refz] ;
expressionz::=
"=" assignment expression
| "&&" expression /* logical connective expression */
| "||"™ expression /* logical connective expression */

"==" expression /* boolean expression */

"!1=" expression /* boolean expression */

\

| "<=" expression /* boolean expression */

| ">=" expression /* boolean expression */

| "<" expression /* boolean expression */

| ">" expression /* boolean expression */

| "+" expression /* mathematical expression */
| "-" expression /* mathematical expression */
| "*" expression /* mathematical expression */
| "/" expression /* mathematical expression */

/* assign either an expression, new class object or new array object */
assignment expression::=
expression
| "new" type new declaration
| "atoi" " (" expression ")"
| "itoa" " (" expression ")"

new declaration::=
"(" [argument list] ")"
| "[" expression "]"

’

